Second Order Charged Particle Effects on Electromagnetic

Waves in the Interplanetary Medium
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Tracking and Orbit Determination Section

Possible influences on the measurements of the total electron content due to mag-
netic fields, spatial inhomogeneities, and pulse shape distortions are investigated
and found to be negligibly small at Deep Space Network tracking frequencies.

I. Introduction

There are essentially two methods now in use to mea-
sure the effect of the interplanetary plasma on the propa-
gation of radio signals used for tracking a spacecraft. One
method is the differenced range versus integrated doppler
(DRVID) calibration utilizing the difference in phase and
group velocity of the electromagnetic waves (Ref. 1). The
other method uses two different frequencies (dual fre-
quency method) taking advantage of the frequency de-
pendence of the phase and group velocity (Ref. 2). The
effects of the interplanetary plasma on the electromag-
netic wave propagation can be theoretically expressed by
the fact that the (relative) dielectric constant € is given by

e=1—-2 (1)
(0]
where
4 2
wp = N = plasma frequency

o = angular frequency of the radio wave
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and

N = number of electrons per cm?

The refractive index is then given by

[,
1 PR 1 Qw2 (2)

since the plasma frequency is wp =~ 0.18 MHz assuming
N =10cm™ and the carrier frequency o is much larger
than wp, the former being 400 MHz for the dual frequency
experiments and 2000 MHz for the DRVID method.
There ensues, then, a first order theory of the effects of
the solar plasma on the electromagnetic wave propagation
as put forward by Eshleman in comprehensive form
(Ref. 3). This first order theory neglects magnetic field
influences, influences due to spacial and temporal inhomo-
geneities in the electron density N, and, finally, pulse
shape distortion due to dispersion. We shall address our-
selves to these higher order effects and show that they are
indeed negligible at the high carrier frequencies involved.
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ll. Development of the Theory

It can be shown (Ref. 4) that the equation for the elec-
tric field of a monochromatic electromagnetic wave in the
presence of a constant magnetic field in convenient vector
notation is given by

? o} A AA
VXV XE~— 2E=-07[AE+Bh><E+Chh'E]
3)
where v
o (v — do)
A=y to (4a)
, » O¢
B=—i G ol (4b)
v _v(v*im)"wa
= Ty (4c)
and

op = plasma frequency

» = angular frequency of the wave

v = effective collision frequency for the electrons
oc = cyclotron frequency

N
h = unit vector in direction of the constant magnetic

field

The magnitude of the interplanetary magnetic field is of
the order of 10-? tesla (10-° gauss) resulting in a cyclotron
frequency of . = 176 sec*. The collision frequency is
v < 1sec™. Therefore, for o = 2 X 10°sec?, the influence
of the magnetic field and the influence of collisions are
totally negligible as far as the wave propagation is con-
cerned. This is even true for the ionosphere and solar
corona where magnetic field strengths are of the order of
10 tesla (1 gauss) so that o, = 10° sec™’. For these cases
Eq. (3) reduces readily to

VXVXE—%Ez——’-’-(iﬂ/ﬁXE—E) (5)

w
02

where the ratio o./o = 5 X 10-* indicates the smallness of
the magnetic field influence. The first term on the right-
hand side of Eq. (5) leads to an observable Faraday rota-
tion effect, however (Ref. 5). The reason for this is that the
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rotation of the polarization is proportional to the differ-
ence of the two wave vectors:

[0} u);: 1 w}z» e
L R ®

whereas the electron content measurements, as in the dual
frequency and DRVID methods, essentially depend on
the wave vectors k, and k_ separately, in which case the
magnetic field influence is negligibly small.

The field equation (3) reduces, therefore, to

o° m% 4ze?
VXVXE—?E=——E=— NE

c? cim

(7)

Turning now to the spacial inhomogeneities of the elec-
tron density, it must be realized that the smallest scale of
such fluctuations is at worst of the order of kilometers.
Measurable changes rather take place over thousands of
kilometers. Therefore, considering the small carrier wave-
lengths involved, a first order Wentzel-Kramers—Brillouin
method is quite adequate for the solution of Eq. (7). Sup-
pose that the electron density varies in the direction of
propagation of the signal (the x direction). With the ansatz

E = A (x) exp [i (kx — ot) + i¢ (x)] (8)
where
o 47762
ke = ¢ c'm No )

with N, a reference electron density chosen such as to
make the difference N (x) — N, small, we obtain an expres-
sion for the correction in amplitude A (x) and phase ¢ (x)
from Eq. (7):

% (k + ¢) A" + (ip” — 2k ¢) A

4re?

cim

-[@r-Fm-ny|a=o o

We neglected the second derivative of the amplitude A”
because of its smallness (see, for instance, Ref. 6). Setting

4re?
ctm

¢’ = (N = N,) (11)
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we obtain from Eq. (10)

éi_ii¢ll_2k¢l

A 2 k+¢ (12)

Noting that ¢ is of the order of ¢/L where L is the scale
length of changes in the electron density which measures
in kilometers and that on the other hand k! is of the order
of centimeters, we see that Eq. (12) can be replaced by

AI
-~ X = —i¢/ (13)

the error being of the order of 10-° (¢/kL =~ 10-%). But
Eq. (13) yields as solution

A=eid (14)

disregarding an immaterial integration constant. From
Eq. (8) we see immediately that there is no effect in first
order.

In second order we obtain from Eq. (12)

’

A .
= i 208 + i) (15)

which when integrated yields

A=ei%exp {k—l / ’ dT[i () — %qs"]} (16)

The first term under the integral sign in Eq. (16) is always
imaginary (see Eq. 11) and will, therefore, always lead to
a phase shift.

If the electron density N (x) is always larger than the
reference electron density N, throughout the ray path,
the signal will always be attenuated. In the opposite case
the second term under the integral becomes imaginary
and leads to an additional phase shift. However, the effect
is extremely small, being of the order A/L =~ 10-* at best.

Turning now to a situation in which the electron density
inhomogeneities are transverse (z direction) to the radio
beam direction, we put

E = A(z)exp [i(kx — ot) + i¢ (2)] (17)
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and obtain in complete analogy to Eq. (11)

c*m

Y= NG - Nl 9

where of course the prime means differentiation with
respect to z. The amplitude turns out to be

A(z) = A, (¢') % (19)

We assume for convenience that N (z) > N,. It is clear
then that a surface of constant phase, the wave front, is
given by Egs. (17) and (18):

?  [4re®
ke +,/z,, \/C2m [N () — N,y] dr = constant (20)

so that

_Eiﬁ _ _l 47:'62 [
dz kN c¢2m

N(z)—~ N, =tana=a (21)

where « is the angle between the direction of propagation
and the x coordinate (the undisturbed direction of propa-
gation). To roughly estimate the angle o, letus put N (z) =
N, (1 + 2z?/D?) where D, the scale length, is assumed to
be 10* km. For a beamwidth B of 26 m, the diameter of
the DSN antennas, we obtain from Eq. (21)

% = 1.8 X 10-° radians (22)

wp
a = —
w

assuming N, = 10 e and o = 2 X 10° sec™.

The apparent change in the range due to such small
angles is very small indeed. To estimate its value, it
suffices to consider that for a distance of 1 AU, the lateral
deviation of the ray path is only about 0.2 km, assum-
ing an angle as given by Eq. (22). The change in the
range or length of the ray path is then only fractions of
a centimeter.

Solar plasma clouds originating from solar flares are
also of concern because of their vastly larger electron
density. Typically, their dimensions are of the order of
10° km and their electron densities are 10 to 100 times that
of the ambient plasma wind. Here we use a ray tracing
technique to estimate their possible influence on the
deflection of radio beams. A simplified geometry of a
plasma cloud is given in Fig. 1.
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x=0 x=d

Fig. 1. Simplified geometry of a plasma cloud

A radio signal enters a plasma slab, confined between
the planes x = 0, and x = d, normally to its surface. Due
to a lateral electron density inhomogeneity N (z), the
beam will be deflected toward a region of lower electron
concentration and will eventually emerge in a different
direction characterized by the angle « in Fig. 1. The
refractive index of the plasma is again given by

g 2re®
SN@=1-"2N(k  (29)

n=,/1—

since the radar frequency o is so much larger than the
plasma frequency 4=e?N/m. In order to obtain an expres-
sion for the angle « and to ultimately evaluate the effect
of the bending on the ray path, it is quite sufficient to use
Fermat’s principle

S/ndszo (24)

If we express the ray in Fig. 1 by z = z (x), the Euler equa-
tion for it becomes very simple:

122“ zli

1T @) (25)

where a prime means differentiation with respect to x.
Integrating Eq. (25) once yields

[1+@)Ph= - (26)

n, =n at the position x =0 (see Fig. 1), and 2’ =dz/dx =0
at x=0. It follows from Eq. (26) that
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is the desired relationship between z and x. Since « is by
definition real, n must be greater than n, The beam is
indeed deflected into regions of a higher refractive index
or a lower electron concentration.

According to P. F. MacDoran! the time rate of change
of the electron content I of a typical solar plasma clou
can be as much as '

1
% =3 X 10 m2sec™ (28)

Assuming a cloud velocity of 300 kin-sec* and an exten-
sion of some 10° km (values which are generally accepted;
see, for instance, Ref. 7), we obtain a characteristic value
for the electron density gradient of about

dN
P 10m (29)

To estimate the angle « in Fig. 1, we now use Eq. (23)

together with a linear relationship N = N, (1 — yz). The
integral (27) becomes

. z dz
- [ 2 (30)
\/(1 4y Noz> ~1
Zo Mo

Defining

2me?
B=rv N, (31)

Me?

and putting z, = 0 for convenience, we obtain from
Eq. (30)

Bx =1In {1+ YV p%2* + 20z + Bz} (32)

We also have (see Fig. 1):

tana = (%)Ld =V(@d+B8z)2—-1 (33)

where z is the solution of Eq. (32) with x = d.

The solution of Eq. (32) in turn is given by

Bz =cosh (Bx) — 1 (34)

1Private communication,
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and, finally,
tan « = sinh (8d) (35)

Just to see how small the angle « is, we take typical
values for the plasma cloud as given by MacDoran. Let
N, = 300 cm™ and & = 4 10° Hz. From Eq. (29) the value
of y turns out to be

1
y=7310"m" (36)

Let d = 10° m, the scalé length of a typical plasma cloud,
then

tan a = sinh Bd = sinh (10-7) (37)

so that a is 10~ rad signifying a lateral deflection of the
beam at a distance of 1 AU of about 10 km, somewhat
larger than before (Eq. 22) but still totally negligible.

Finally, we address ourselves to the question of pulse
degradation by dispersion in the interplanetary plasma.
It is clear that a pulse or pulse train may be represented
by a Fourier integral. Accordingly the electric field of the
radio signal is

E~l= / F (o) do exp [id (a)] (38)
where
¢ (o) = %(w — %) — of (39)

which is a solution of Eq. (7) using the approximation

DA
(=) -1

The pulse spectrum F () is sharply peaked at the carrier
frequency o, with an inverse bandwidth o, small com-
pared to the carrier. For the DSN transmitter o/wp =
2.5 X 10, surely a small number. Because of these prop-
erties of F (v), the phase ¢ () can be expanded in a Taylor
series about «, and we have
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With the substitution w, — o = o’, we obtain from Egs. (38)
and (40)

{2 (em ) - e

Nk 03X ,___m%x Mo
Xexp{z[c t+20w§]m zzcwg(w)

(41)

where it is recognized that the first exponential deter-
mines the phase velocity and the first term in the second
exponential determines the group velocity and the last
term represents a distortion of phase and amplitude. For
mathematical convenience we take a gaussian pulse

Ao [-<F] (42

F(o) =

The integral (41) becomes with the pulse spectrum (42)

wlfo-2)-] o

The term € = wpo? x/2c0} responsible for the pulse degra-
dation can quickly be seen to be ridiculously small even
for distances x of the order of 1 AU. For o; =~ 1 10° sec?,
wo =~ 2 X 10° sec?, wp ~ 1.8 X 10° sec? (for N, = 10 cm™2),
we have

€e=16X 1012y

where x is measured in kilometers. The influence of dis-
persion on the pulse shape is negligible. The situation
would change drastically if the carrier frequency would
be lowered and the modulation frequency (inverse band-
width) would be enlarged. For instance, a twice as high
modulation frequency together with half the carrier fre-
quency would result in a 4 X 8 = 32-fold enhancement of
the pulse shape effect.
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It must be realized that Eq. (43) is only valid if e << L.
In that case Eq. (43) may be written as:

{2 (o )~ )

where of course

_ w%» w% i
€= 20} ¢ (45)
In case of a slowly varying electron density along the ray
path, we have

4re?
0bX = m I (46)
where
1=/1'N<7)d7 (47)

is the electron content in cm™ since we use cgs units
throughout.

At the time

2
v=Z—t+ (48)

2010(2)

the pulse arrives at the receiver. In that case, x is the
distance between the spacecraft and the earthbound
receiver. If the pulse (44) is beat against a reference
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pulse of the same shape (Eq. 42), there results a signal
which may be expressed as

el ()

— exp [— “; ¥ + 3)2] (49)

In Eq. (49) the high frequency component has been aver-
aged out and § is the delay time between the received
pulse and the reference pulse. If the pulse maxima coin-
cide (8 = 0), there results a net signal

b= 2exp [— “’T (t')z] sin? {e (% () — %)} (50)

and, since € is small, Expression (50) can be written as

o= — 2 (32— () — %) exp [— “’Z (t’)2:| (51)

The pulse Eq. (51) is symmetric about its maximum
(' = 0). If the delay time 8 is not zero, the pulse shape
is asymmetric. Therefore, by changing 8, it is possible to
measure the group velocity accurately if the quantity € is
not too small. For the DSN, however, € is far too small
as we have seen previously and therefore a pulse shape
analysis is out of the question.

Ill. Conclusion

In the foregoing, we have shown that higher order
effects of the interplanetary plasma on radio signals as
utilized in the DSN are negligible as far as a determina-
tion of the electron content is concerned. We have also
seen that a lateral change in electron concentration
engenders very small angular deviations of the ray path.
They also lead to a negligible change in the apparent
range. The first order theory is therefore completely ade-
quate to deal with the charged particle content.
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